Зарядно-десульфатирующий автомат для автомобильных аккумуляторов, десульфатация акб и схема

Зарядно-десульфатирующий автомат для автомобильных аккумуляторов, десульфатация акб и схема

Поделки своими руками для автолюбителей

Схема для восстановления автомобильного аккумулятора

Всем привет, вы давно просите написать статью про устройство для восстановления автомобильных, свинцово-кислотных аккумуляторов. Наверное любой автолюбитель сталкивался с явлением, когда аккумулятор полежав некоторое время без дела, перестает отдавать номинальную ёмкость.

Крутит стартёр полсекунды затем задыхается, но напряжение на нём нормальное — 12 вольт, в этом случае в народе часто говорят «аккумулятор не держит ток», с этим может столкнулся каждый.

Но почему это происходит?

Автомобильный аккумулятор состоит из свинцовых пластин находящихся в растворе электролита, в данном случае электролитом является серная кислота. Процесс заряда и разряда аккумулятора не что иное, как окислительно-восстановительный процесс. Протекает химическая реакция в ходе которой, свинцовая пластина вступает в реакцию с оксидами на соседней пластине.

В ходе данной реакции образуются сульфаты, которыми со временем обрастают пластины, сульфаты препятствуют протеканию тока, так как являются плохим проводником и со временем аккумулятор теряет ёмкость и не способен отдавать большой ток для работы стартёра.

Если ваш аккумулятор заряжается и разряжается быстрее чем раньше, не имея при этом механических повреждений, скорее всего сульфатация убила его, но отчаиваться не стоит, читаем статью до конца…

Предлагаемое устройство, отныне — «десульфатор» создаёт короткие импульсы высокой амплитуды и чистоты, импульс длится определённое время, затем простой, затем снова импульс.

Такие ударные процессы могут разрушить сульфатную плёнку и в теории это возможно, на практике не все аккумуляторы удаётся восстановить, из-за конструктивных особенностей последних. Но судя по статистике, около 80-85 % старых аккумуляторов подлежат восстановлению. Естественно если причиной неработоспособности является сульфатация, а не обрыв свинцовых пластин или иное механическое повреждение.

Вот такое получится устройство…

Как пользоваться устройством? Данный вариант является зарядно-десульфатирующим устройством, обычный десульфатор питается от аккумулятора, который он десульфатирует и постепенно разряжает его, в этом же случае устройство заряжает аккумулятор короткими всплесками высокого напряжения высокой частоты.

Схему можно использовать и для зарядки низковольтных, свинцовых аккумуляторов с номинальным напряжением в 4-6 вольт, такие ставят в китайские фонарики, в детские электрокары и так далее…

Схема изначально создана для зарядки аккумуляторов малой ёмкости, но её успешно используют и для десульфатации автомобильных аккумуляторов.

Перед тем, как начать процесс заряда с десульфатацией, нужно слегка подзарядить автомобильный аккумулятор. Для начала нужно найти любой источник питания или зарядное устройство с напряжением от 8 до 12 вольт и подключить его на вход десульфатора. Но не напрямую, а через лампу накаливания 12 вольт с мощностью в 21 ватт, чтобы не превысить ток заряда.

К выходу прибора подключается аккумулятор, который нужно восстановить, ну и в принципе всё.

Так, как прибор работает в звуковом диапазоне, вы скорее всего услышите слабый свист, силовые компоненты схемы слегка должны нагреваться.

Осциллографом можно убедиться, что аккумулятор заряжается импульсами тока высокой частоты.

Схема устройства довольно простая…

Простыми словами поясню как работает схема.

Напряжение зарядного устройства через предохранитель и диод поступает на схему десульфатора, для маломощной части схемы, питание подаётся через токоограничивающий резистор R1, затем сглаживается небольшим электролитическим конденсатором.

На микросхеме NE555 собран генератор прямоугольных импульсов, частота этих импульсов около 1 килогерц, коэффициент заполнения 90%, то есть сигнал высокого уровня длится большУю часть времени, именно этот импульс нам нужен для того, чтобы открыть полевой транзистор. Но проблема заключается в том, что при подаче такого импульса на полевой транзистор он большую часть времени будет находиться в открытом состоянии и лишь 10% в закрытом, это приведёт к тому, что транзистор будет прокачивать слишком большой ток и как следствие мы получим сильный нагрев всех силовых элементов и большое потребление тока всей схемы в целом.

Это неэффективно и может навредить аккумулятору. Один из вариантов — это снижение длительности сигнала высокого уровня, тогда транзистор будет открыт на короткое время и всё станет на свои места. Но к сожалению в таком включении конструктивные особенности таймера NE555 не позволяют сделать этого, так как же быть?

Микросхема CD4049 представляет из себя логику, которая содержит в своём составе 6 логических инверторов «не», каждый инвертор имеет один вход и один выход, их задача «отрицание». Если на вход поступает высокий уровень, на выходе получаем обратное, иначе говоря инвертированный или перевёрнутый сигнал.

Полевой транзистор 10 % времени у нас открыт, 90% закрыт, открываясь он замыкает дроссель на массу питания, в дросселе накапливается некоторая назовём это энергией, а когда транзистор закрыт цепь разрывается и за счёт явления самоиндукции, которая свойственна индуктивным нагрузкам, дроссель отдаёт накопленную энергию.

Это кратковременный всплеск напряжения с высокой амплитудой, притом напряжение самоиндукции в разы выше напряжения питания, этот всплеск напряжения выпрямляется и подается на аккумулятор.

Процесс происходит больше тысячи раз в секунду, то есть на аккумулятор подаются кратковременные импульсы высокого напряжения с высокой частотой, именно это и разрушает сульфатную плёнку.

Я подключил на вход схемы накопительный конденсатор и стало ясно, что амплитудное значение выходного напряжения при питания от источника 12 вольт доходит до 70-75 вольт и зависит исключительно от индуктивности накопительного дросселя.

В схеме задействован предохранитель и ещё один выпрямительный диод.

Предохранитель защищает десульфатор при случайных коротких замыканиях на выходе, а диод выполняет несколько функций: во-первых защищает схему, если вы случайно её подключите к зарядному устройству неправильно… и во-вторых защищает зарядное устройство от всевозможных импульсных помех и всплесков напряжения, которые образуются на плате десульфатора.

Я думаю все поняли как это работает.

О компонентах…

Ну с таймером и логикой думаю всё понятно, в моём случае они установлены на панельке для безпаечного монтажа, но вам советую после проверки схемы запаять их напрямую.

Полевой транзистор IRF3205 или любые другие n-канальные с напряжением от 60 до 200 вольт и с током от 30 ампер.

Транзистор советую установить на небольшой радиатор.

Дроссель имеет индуктивность около 200 микрогенри, намотан на кольце из порошкового железа, такие кольца можно найти в компьютерных БП, размеры кольца внешний диаметр-20.5мм, внутренний 12мм и ширина кольца 6.6мм.

Обмотка намотана проводом 1мм, количество витков 60, в моём случае прОвода чуть-чуть не хватило и индуктивность получилась слегка меньше, но работает устройство хорошо. Размеры кольца особо не критичны, главное соблюдать индуктивность и мотать обмотку проводом 1 -1.2 миллиметра.

Читать еще:  Генератор ваз 2114: конструктивные особенности, диагностика и ремонт генератора

Конденсатор С1 на 100- 220 микрофарад, очень желательно взять с низким внутренним сопротивлением, так как схема генератора фактически питается от данного конденсатора, а значит он постоянно будет накапливать и отдавать энергию, даже слегка греется во время работы.

Оба диода нужно взять с током в 5-10 ампер, можно обычные, но желательно взять импульсные диоды.

Вот печатная плата, скачать её можно в конце статье.

На самом зарядном, нужно выставить ток не более 2 ампер, иначе сгорит предохранитель на плате десульфатора. Кто-то скажет 2 ампера зарядного тока это мало?

-Да согласен, но не забываем, что у нас в большей степени не зарядка, а десульфатация.

В холостую прибор потребляет от источника питания ток всего в 100 миллиампер, его можно подключить к любому зарядному устройству с напряжением 12-15 вольт, ограничить ток на уровне 2 ампер и всё.

Ограничение можно сделать мощным резистором или лампочкой накаливания соответствующей мощности, подключённой в разрыв плюса питания.

Введите электронную почту и получайте письма с новыми поделками.

Можно использовать и более низковольтные блоки питания с напряжением 8-10 вольт, так как наша схема всё равно повышает начальное питание до нескольких десятков вольт.

Сколько должен длиться процесс десульфатации?

Автор данной схемы говорит, что в течение двух недель регулярной зарядки полностью можно восстановить старый аккумулятор и конечно же без проверки я бы не стал писать эту статью.

В наличии у меня несколько 6 вольтовых аккумуляторов на 10 амперчасов, которые не были в эксплуатации несколько лет, в течение пяти дней я регулярно заряжал один из этих аккумуляторов десульфатором, затем разряжал.

В самом начале подопытный аккумулятор отдавал ёмкость всего 700-800 миллиамперчасов, не помогла и заливка дистилированной воды, но десульфатор помог..

Спустя 5 дней аккумулятор отдаёт аж 4 ампера из 10, это я думаю очень хороший показатель.

Архив к статье; плата в формате .lay скачать.

Тема: Зарядно-десульфатирующий автомат для автомобильных аккумуляторов и не только.

Опции темы

Зарядно-десульфатирующий автомат для автомобильных аккумуляторов и не только.

Не всегда есть возможность находиться возле зарядного устройства и все время контролировать процесс зарядки, поэтому зачастую либо систематически недозаряжают батареи, либо перезаряжают их, что, конечно же, не продлевает сроких службы.

Из химии известно, что разность потенциалов между отрицательной и положительной пластинами в аккумуляторной батарее составляет 2,1 В, что при 6 банках дает 2,1 х 6 = 12,6V

При зарядном токе, равном 0,1 от емкости батареи, в конце заряда напряжение повышается до 2,4 В на одну банку или 2,4 х 6 = 14,4 В. Повышение зарядного тока ведет к повышению напряжения на аккумуляторе и повышенному разогреву и кипению электролита. Заряд же током ниже 0,1 от емкости не позволяет доводить напряжение до 14,4 В, однако длительный (до трех недель) заряд малым током способствует растворению кристаллов сульфата свинца. Особенно опасны дендриты сульфата свинца, “проросшие” в сепараторах. Они и вызывают быстрый саморазряд батареи (с вечера зарядил аккумулятор, а утром не смог запустить двигатель). Вымыть же дендриты из сепараторов можно только растворением их в азотной кислоте, что практически не реально.

Путем длительных наблюдений и экспериментов была создана электрическаясхема, которая, по моему мнению , позволяет довериться автоматике. Опытная эксплуатация в течение 10 лет показала эффективную работу устройства. Принцип работы заключается в следующем:

1. Заряд производится на положительной полуволне вторичного напряжения.

2. На отрицательной полуволне происходит частичный разряд батареи засчет протекания тока через нагрузочный резистор.

3. Автоматическое включение при падении напряжения за счет саморазрядадо 12,6 В и автоматическое отключение от сети 220 В при достижении напряжения на батарее 14.5 В.

Отключение – бесконтактное, посредством симистора и схемы контроля напряжения на батарее.

Важное достоинство метода заключается в том, что пока не подключена батарея (автоматический режим), блок не может включиться, что исключает короткое замыкание при замыкании проводов, подводящих зарядный ток к аккумуляторной батарее.

При сильно разряженной батарее включение блока возможно посредством переключателя “АВТОМАТ-ПОСТОЯННО”.
Еще одно очень важное достоинство – отсутствие сильного”кипения”, что в совокупности с автоматическими отключением и включением позволяет оставлять включенное устройство без присмотра на длительное время. Я про-экспериментировал с двухнедельным режимом постоянного включения в режиме “АВТОМАТ”.

В целях пожарной безопасности необходимо, чтобы зарядное устройство было вметаллическом корпусе, сечение подводящих проводников к батарее – не менее 2,5мм2. Обязателен так же надежный контакт на клеммах батареи, для этого использовал зажимы, типа “Крокодил”


Напряжение сети 220 В подается через предохранитель FU1 и симис-тор VS1 на первичную обмотку силового трансформатора. Со вторичной обмотки переменное напряжение U2=21 В выпрямляется диодом VD1 и через балластный резистор R3 сопротивлением 0,5 Ом поступает на амперметр РА1 затем на “+” батареи, к которой подключены вольтметр на 15 В, тумблер SA1 “ВКЛ.ДЕСУЛЬФАТА-ЦИЯ” и схема контроля и управления, представляющая собой компаратор с гистерезисом около 1,8 В. При напряжении на аккумуляторе 12,6 V включается, и через оптрон U1 включает симистор VS1, что приводит к включению трансформатора Тr1 и подаче напряжения на заряжаемый аккумулятор. Подключение тумблером SA1 резистора R10 обеспечивает асимметричность формы зарядного тока. Свето-диоды VD7и VD3 индицируют включение блока в режимы “ДЕСУЛЬФАТАЦИЯ” и “ВКЛ.” соответственно. Резистором R13 подбирают величину гистерезиса, чем больше сопротивление, тем меньше величина гистерезиса и наоборот, а резистором R16 устанавливается момент отключения блока при напряжении на вольтметре 15 В (=0,5 В падает на подводящихпроводах). Мостик VDS обеспечивает включение симистора на обеих полуволнах сетевого напряжения и нормальную работу трансформатора. Тумблер SA2 служит для включения режима “ПОСТОЯННО”.
Регулирующим элементом тока является тиристор VS2, работающий в ключевом режиме. Он управляется импульсами, вырабатываемыми релаксационным генераторомна однопереходном транзисторе VT1. Величина выходного тока определяется разностью фаз импульсов управляющего генератора и полуволн выпрямленного тока, зависящего, в свою очередь, от емкости зарядного конденсатора С1. Последний включен в коллекторную цепь транзистора VT3, выполняющего функции усилителя тока. С движка переменного резистора R8 через разделительный резистор R7 на базу VT3 поступает часть напряжениясо стабилитрона VD6, а на эмиттер подают через разделительный диод D3 напряжение, снятое с резистора R3, являющегося датчиком тока. (Величину резистора R7 нужно подобрать такимобразом, чтобы ток был максимальным, а стрелка на амперметре не дёргалась). Параллельно соединенные резистор R5 и конденсатор С2 составляют цепь временной задержки вслучае исчезновения напряжения обратной связи по току в период, когда тиристорVS2 закрыт. Постоянная времени цепи R5C2 равна 0,02 с. Диод VD4 служит для защиты перехода «база — эмиттер» транзистора VT3 от пробоя обратным напряжением. Когда на выходе происходит короткое замыкание, задающее напряжениена резисторе R8 исчезает, транзистор VT3 закрывается. В результате прекратитсязаряд конденсатора С1 и тиристор VS2 не откроется.
Схема разряда – аккумуляторной батареи, предназначенная для предотвращения процесса сульфатации пластин аккумуляторной батареи собрана на транзисторе VT4. Принцип её работы следующий: Во время действия отрицательной полуволны сетевого напряжения, что соответствует отсутствию тока заряда, ток, протекающий по пути – вывод вторичной обмотки трансформатора стабилитроны VD13и VD14, резистор R10, база-эмиттер транзистора VT4,открывает этот транзистор. Происходит разряд аккумуляторной батареи по пути:+АКБ, коллектор-эмиттер VT4, резистор R10 -АКБ. Ток разряда, как было написано ранее определяется значением сопротивления резистора R10 .При изменении полуволны питающего напряжения, транзистор закрывается ипроисходит заряд аккумуляторной батареи от схемы заряда.
Стабилитроны VD13 и VD14 предназначены для предотвращенияразряда АКБ по вышеописанной цепи в случае пропадания напряжения
сети.
Данным зарядным устройством можно заряжать раличные аккумуляторные батареи, так как есть возможность плавно регулировать ток заряда.
Для более стабильного температурного режима, я установил кулер от БП компьютера, для его питания поставил стабилизатор на микросхеме КР142ЕН8Б

Читать еще:  Сигализация кгб (kgb) для автомобиля: схема подключения и инструкция по эксплуатации

Кого заинтересует устройство, могу поделиться опытом, а так же файлами печатных плат в формате layout, которые я разработал и испытал.

Рис.1 платы автоматики.

Рис 2. платы регулировки тока:

Рис 3. платы разрядки.

Все о десульфатации автомобильного аккумулятора: технология и оборудование

Как распознать критическую степень сульфатации АКБ?

На обслуживаемых батареях засульфатированность легко определить визуально. Достаточно отвернуть крышечки и осмотреть пластины: белый налет на электродах указывает на то, что необходима десульфатация. Разница становится отчетливо понятной, если сравнять внутренности разбалансированного источника питания с заряженным. В последнем плюсовые пластины – коричневые, а минусовые – серые.

Ещё один признак критической сульфатации пластин – быстрый заряд и быстрый разряд. Примером тому может служить обычная ситуация: зарядное устройство только подключили, как тут же начал кипеть электролит. Как ни странно, соблюдая все азы технологии зарядки АКБ , он действительно может зарядится буквально за 20-30 минут и напряжение нормально разомкнутой цепи, измеренное без нагрузки, будет эквивалентно 100% заряду. Только вот работать под нагрузкой такая батарея не в состоянии: обычная лампа ближнего света посадит ее буквально за 10-15 минут, в то время, как здоровый АКБ она разряжает за 8-10 часов.

На профессиональном уровне изделие с прогрессирующим образованием сернокислого свинца на пластинах отличают еще две характеристики:

  1. Внутреннее сопротивление. С ростом кристаллов сульфата свинца оно возрастает.
  2. Емкость. С прогрессом сульфатации она уменьшается.

По поводу измерений емкости автомобильного аккумулятора можно сказать так: с недавних времен это возможно сделать без особых усилий. Замер выполняется с помощью диагностических сканеров или, как принято их еще называть, тестерами аккумуляторов. В этом классе есть как профессиональные модели, как-то Bosch BAT 121 с функцией распечатки результатов проверки, так и версии для домашнего применения (Lancol MICRO-200 и пр.). Эти устройства, кроме всего прочего, в состоянии показать среднюю плотность электролита, уровень зарядки в процентном соотношении, внутреннее сопротивление и, разумеется, вольтаж.

Способы десульфатации пластин свинцового аккумулятора

Классический вариант идеи десульфатирующих мероприятий состоит в том, чтобы растворить крупные сульфаты свинца циклами заряд-разряд. Восстановить заводскую ёмкость не всегда возможно. Так, в зоне риска батареи, которые хранились в разряженном состоянии продолжительное время. На пластинах таких изделий имеются крупные наросты, имеющие высокое сопротивление и трудно поддающиеся растворению.

Исходя из определения десульфатации понятно, что не любое зарядное годится на роль восстанавливающего. Мы уже изучали вопрос выбора зарядного устройства для автомобильного аккумулятора . Повторимся, что в идеальном варианте это должна быть зарядка с режимом десульфатирования, как-то программируемый «комбайн» Кулон 912, «самоделка» от Сороки и пр. Электрооборудование такого класса отличает набор встроенных контрольно-тренировочных циклов «заряд-разряд».

На крайняк сойдут ЗУ с регулируемой силой тока и напряжением. Позже мы укажем, что этот вариант уместен на легких стадиях засульфатированности и далеко не для всех типов АКБ. Полностью автоматическому оборудованию типа Bosch C3-C7, Стек, и пр. доверять не стоит, поскольку корректность реализованной в них методики восстановления слишком унифицирована, отчего не дает ощутимого эффекта.

Метод №1. Зарядное устройство с режимом восстановления

Итак, на руках профессиональное ЗУ со встроенным алгоритмом контрольно-тренировочных циклов «заряд-разряд». Фактически это продвинутый автомат с ручными настройками. Вся суть этого метода сводится к настройке этого оборудования.

Ток и напряжение здесь, как правило, не задаются. Вместо стандартных единиц прописывается емкость. Согласно инструкции, это чаще всего цифра, отображенная на этикетке. Впрочем, иногда фигурирует и фактическое число А*ч, которое зарядка оценивает самостоятельно. Модели самодельного происхождения, как правило, требуют расчета нагрузки и имеют выходные контакты для ее подключения. В роли нагрузки служит лампа.

Отдельного внимания заслуживает контактная база зарядного устройства. Какого бы происхождения оно не было, желательно его доработать:

  • Сечение провода между зарядкой и АКБ, батареей и нагрузкой должно быть не менее 4 мм2.
  • Максимальная длина проводника на участке ЗУ-аккумулятор – 50 см, источник питания-нагрузка – 50-70 см.
  • Крокодилы следует заменить на клеммы с болтами.

Внимание! Батарею типа Ca/Ca нельзя разряжать ниже 12 В.

Это один из вариантов лечения запущенной батареи. Более современные зарядные устройства позволяют вовсе обойтись без разрядки. Такие ЗУ обладают адаптивным алгоритмом настройки длительности импульсов тока и паузы между ними, а также самой силы тока. Регулируя эти три величины, удается расшатать крупные кристаллы и впоследствии растворить их без принудительной разрядки.

Метод №2. Обычная зарядная аппаратура с регулируемым напряжением и током

Сеть Интернет предлагает нам десятки вариантов самодельных схем десульфатирующего устройства. Это может быть как автономное изделие, собранное с нуля, так и дополнительный блок к уже существующему зарядному. По-своему привлекателен вариант ручной десульфатации, требующий минимум доработок. Эту версию мы и рассмотрим.

В центре внимания – обычное зарядное устройство с регулируемой силой тока и напряжением. В дополнение к нему потребуется обычная автомобильная лампа, мощность которой выбирается из расчета 10 часовой разрядки аккумулятора определенной емкости. Например, для 60 А*ч подойдет лампочка на 55 Вт. Для полноценного протекания процесса разрядки полезно включить между лампой и АКБ реле поворотов. Паузы стимулируют химические вещества реагировать полностью.

Идея десульфатации та же. Принцип реализации похож на работу автомата с контрольно-тренировочными циклами «заряд-разряд»: зарядка, за которой следует пауза и разрядка. Все подробности читайте в технологии восстановления аккумуляторов:

  • Восстановить уровень электролита. Будьте готовы к тому, что в процессе зарядки кислота высвобождается из пластин и жидкости в банке станет больше.
  • Поставить батарею на зарядку. Максимальный ток – 1А. Напряжение: 13,9-14,4 В. Время зарядки – около 8 часов. В зависимости от степени запущенности сульфатации через 8 часов будет наблюдаться различное напряжение. Если имел место глубокий разряд ниже 10,8 В, то потребуется дополнительная пауза в 24 часа и повтор цикла подзарядки. Например, если исходный вольтаж был около 9 В, то через 8 часов будет около 11 В. Выдерживаем паузу в 24 часа и продолжаем заряжать до 12,7 В с силой тока уже 2А.
  • Сделать паузу на 24 часа.
  • Разрядить АКБ лампой, подключенной через реле поворотов, до 10,8В.
  • Поставить аккумулятор на зарядку. Максимальная сила тока – 2А. Вольтаж: 13,9…14,4В. По достижении 12,7 В отключить зарядное и дать отстоятся аккумулятору 24 часа.
  • Вновь разрядить аккумуляторную батарею до 10,8В.
  • Зарядить током 2А (напряжение 13,9-14,4В) до 12,7В.
  • При необходимости повторить цикл разряд-заряд.
Читать еще:  Обзор сигнализации cenmax (ценмакс), инструкция по эксплуатации, отзывы

Советы по технике восстановления аккумуляторной батареи

Не стоит рассматривать десульфатацию как единственное средство излечения свинцового аккумулятора. Он выходит из строя не только по причине крупных наростов сульфата свинца, не поддающихся растворению. В копилку причин также следует включить постоянный перезаряд, ведущий к коррозии токоотводов и разрушению намазки пластин, неизбежную коррозию самих пластин и отслоение активных веществ с поверхности электродов под действием вибрации.

Опыт проведения десульфатирующих мероприятий позволяет выделить главные правила, которые стоит неукоснительно соблюдать:

  • Процесс производить только в теплом хорошо проветриваемом помещении (+20…+25 °C).
  • Не допускать кипения электролита.
  • Не производить десульфатацию чаще 1 раза в год.

Разумеется, процесс стоит периодически контролировать. Например, для того, чтобы своевременно выявить ситуацию, когда одна банка аккумулятора при зарядке не кипит .

Зарядно-десульфатирующий автомат для автомобильных аккумуляторов

Давно уже известен тот факт, что заряд электрохимических источников питания асимметричным током, при соотношении Iзар : Iразр = 10:1, в частности кислотных аккумуляторов, приводит к устранению сульфатации пластин в батарее, т.е. к восстановлению их емкости, что, в свою очередь, продлевает срок службы батареи.

Не всегда есть возможность находиться возле зарядного устройства и все время контролировать процесс зарядки, поэтому зачастую либо систематически недозаряжают батареи, либо перезаряжают их, что, конечно же, не продлевает срок их службы.

Из химии известно, что разность потенциалов между отрицательной и положительной пластинами в аккумуляторной батарее составляет 2,1 В, что при 6 банках дает 2,1 х 6 = 12,6 В.

При зарядном токе, равном 0,1 от емкости батареи, в конце заряда напряжение повышается до 2,4 В на одну банку или 2,4 х 6 = 14,4 В. Повышение зарядного тока ведет к повышению напряжения на аккумуляторе и повышенному разогреву и кипению электролита. Заряд же током ниже 0,1 от емкости не позволяет доводить напряжение до 14,4 В, однако длительный (до трех недель) заряд малым током способствует растворению кристаллов сульфата свинца. Особенно опасны дендриты сульфата свинца, “проросшие” в сепараторах. Они и вызывают быстрый саморазряд батареи (с вечера зарядил аккумулятор, а утром не смог запустить двигатель). Вымыть же дендриты из сепараторов можно только растворением их в азотной кислоте, что практически нереально.

Путем длительных наблюдений и экспериментов была создана электрическая схема, которая, по мнению автора, позволяет довериться автоматике. Опытная эксплуатация в течение 10 лет показала эффективную работу устройства. Принцип работы заключается в следующем:
1. Заряд производится на положительной полуволне вторичного напряжения.
2. На отрицательной полуволне происходит частичный разряд батареи за счет протекания тока через нагрузочный резистор.
3. Автоматическое включение при падении напряжения за счет саморазряда до 12,5 В и автоматическое отключение от сети 220 В при достижении напряжения на батарее 14.4 В.

Отключение — бесконтактное, посредством симистора и схемы контроля напряжения на батарее.

Важное достоинство метода заключается в том, что пока не подключена батарея (автоматический режим), блок не может включиться, что исключает короткое замыкание при замыкании проводов, подводящих зарядный ток к аккумуляторной батарее.

При сильно разряженной батарее включение блока возможно посредством переключателя “АВТОМАТ-ПОСТОЯННО”.

Еще одно очень важное достоинство — отсутствие сильного “кипения”, что в совокупности с автоматическими отключением и включением позволяет оставлять включенное устройство без присмотра на длительное время. Автор про-экспериментировал с двухнедельным режимом постоянного включения в режиме “АВТОМАТ”.

В целях пожарной безопасности необходимо, чтобы зарядное устройство было в металлическом корпусе, сечение подводящих проводников к батарее — не менее 2,5 мм2. Обязателен также надежный контакт на клеммах батареи.

Напряжение сети 220 В подается через предохранитель FU1 и симистор VD1 на первичную обмотку силового трансформатора. Со вторичной обмотки переменное напряжение U2=21 В выпрямляется диодом VD3 и через балластный резистор R8 сопротивлением 1,5 Ом поступает на клемму “+” батареи, к которой подключены вольтметр РА1 на 15 В, тумблер SA2 “ВКЛ.ДЕСУЛЬФАТА-ЦИЯ” и схема контроля и управления, представляющая собой триггер Шмитта с гистерезистором около 1,8 В, определяемым падением напряжения на диодах VD5, VD6 и переходе база-эмиттер транзистора VT2. Транзистор VT1 при напряжении на аккумуляторе 12,6 В включается, и через оптрон VD4 включает симистор VD1, что приводит к включению трансформатора Т1 и подаче напряжения на заряжаемый аккумулятор.

Подключение тумблером SA2 резистора R5 обеспечивает асимметричность формы зарядного тока. Светодиоды VD8 и VD7 индицируют включение блока в режимы “ДЕСУЛЬФАТАЦИЯ” и “ВКЛ.” соответственно. Резистором R7 устанавливается момент отключения блока при напряжении на вольтметре 15 В (=0,5 В падает на подводящих проводах). Мостик VD2 обеспечивает включение симистора на обеих полуволнах сетевого напряжения и нормальную работу трансформатора. Тумблер SA1 служит для включения режима “ПОСТОЯННО”.

Детали. Силовой трансформатор — Р=160 Вт, Uii=21 В, провод — ПЭВ-2-2,0. R8 — проволочный (нихром) диаметром 0,6 мм. R5 — ПЭВР на 10. 15 Вт. Диод VD3 — любой из Д242. Д248 с любым буквенным индексом на радиаторе площадью S=200 см2. Остальные резисторы типа — МЛТ, СП; симистор — КУ208Н, без радиатора. S1 — любой, например МТ1. S2 — ТВ1-1. HL1 —любая лампа на 12 В. РА1 — измерительная головка на 15 В.

РАДИОЛЮБИТЕЛЬ 10/98, c.30-31.
А.СОРОКИН, 343902, Украина, г.Краматорск-2, а/я 37.

Ссылка на основную публикацию
Adblock
detector