Балансирный (уравновешивающий) вал

Балансирный (уравновешивающий) вал

Балансирный вал двигателя

Балансирный вал двигателя, он же уравновешивающий вал — это деталь не простой конструкции, функция которой заключается в снижении вибрации двигателя.

Что такое балансирные валы

ДВС — это устройство сложной конструкции, основанной на преобразовании одной энергии в другую. Чем сложнее устройство, в данном случае, чем больше цилиндров имеет двигатель, тем сильнее создаются вибрации и колебания отдельных деталей, и двигателя целиком.

Цилиндры в ДВС располагаются по-разному:

  1. Рядная схема двигателя. Это такая, при которой оси цилиндров находятся в одной плоскости.
  2. Оппозитная схема. Оси цилиндров на противоположной стороне, то есть через 180 градусов.
  3. V-образная схема ДВС. Оси цилиндров в В-образных моторах располагаются в разных плоскостях.

Во всех двигателях существуют два вида сил:

  • Уравновешенные. Уравновешенные силы — это сила давления, сила трения.
  • Неуравновешенные. Неуравновешенные силы — это вес силового привода, сила инерции (то есть обратная сила).

В связи с тем, что двигатели не могут работать без вибрации, конструкторами была придумана деталь, которая сводит к минимуму повышенные значения вибрации и колебания.

Балансирный вал представляет собой цилиндрический стержень с имеющимися на нем пазами. Уравновешивающий вал гасит силы инерции второго порядка. Силы второго порядка в двигателе внутреннего сгорания не уравновешиваются путем установки дополнительных грузов на щека коленчатого вала. К силам первого порядка относится масса кривошипа, радиус его движения, угловая скорость и угол поворота. К силам второго порядка в ДВС относятся лямбда, то есть отношение радиуса кривошипа к длине шатуна.

Принцип работы балансирных валов

Балансирные валы устанавливаются парами, по разные стороны от коленвала с симметричным расположением. Насаживаются валы для балансировки на подшипники скольжения, которая обеспечивается смазкой мотора.

Коленчатый вал ДВС вращает балансирные валы. Один балансирный вал вращается в одну сторону, второй — в другую. Вращаются балансиры со скоростью, в два раза больше скорости вращения коленвала.

А знаете ли вы, что перенатяг дифференциала — это показатель динамики управления и проходимости по бездорожью.

Привод балансирных валов

Привод для балансирных валов делают таким образом, чтобы передаваемое усилие коленвалом балансирным валам осуществлялось через зубчатый редуктор или ременной передачи, или комбинированного привода (зубчатый редуктор+ременная передача).

Ремонт балансирных валов

Во время работы ДВС, установленные балансирные валы испытываются большие нагрузки. Самая большая доля нагрузки приходится на дальние подшипники, в связи с чем, больший износ балансировочных валов происходит в местах соединения с подшипниками и самих подшипников. Если нагрузки на балансирующие валы превышает допустимую, то слышны шумы, ДВС вибрирует сильнее, из-за чего, также, рвется цепь привода балансиров.

Полная съемка работы на видео в автосервисе. Работа по удалению балансировочных валов D4CB, автомобиль Хендай Гранд Старекс.

Стоимость ремонта балансирных валов дороговато, в разных автосервисах по-разному. Поэтому, многие автоводители, чтобы не покупать новые или не ремонтировать, просто демонтируют эти балансировочные валы и ставят заглушки в отверстиях корпуса.

Если использовать балансировочные валы в двигателе, то это усложняет конструкцию и повышает стоимость ремонта, а также приводит к уменьшению мощности ДВС, примерно, на 15 л.с.

Если балансирные валы изношены, то, как правило, уменьшается мощность двигателя и увеличивается время разгона. Это связано с тем, что при износе валов для балансировке нарушаются фазы, фазы газораспределения смещаются в сторону позже.

Как уменьшить вибрацию двигателя

Для уменьшения «пляски» и тряски двигателя необходимо настроить все узлы устройства на оптимальные режимы работы. Чтобы ДВС не вибрировал, сначала надой найти причины. Причиной вибрации может быть банальное ослабление крепежа ДВС.

Причин из-за которых двигатель автомобиля сильно вибрирует может быть много:

  1. подсос воздуха;
  2. неправильное поступление топлива;
  3. сбито зажигание;
  4. ослаблено крепление мотора;
  5. низкая компрессия;
  6. троение двигателя.

В этом видео рассмотрена одна из возможных причин вибрации

В этом видео показывается ликвидация вибрации за счет правильно выставленных меток, автомобиль Чери Тиго.

Назначение и принцип работы балансирных валов двигателя

При работе кривошипно-шатунного механизма в двигателе внутреннего сгорания возникают силы инерции. Эти силы подразделяются на уравновешенные и неуравновешенные, которые также называют силами инерции второго порядка. Они возникают от движения поршней и других деталей, а также зависят от веса силового агрегата. В результате дисбаланса появляются вибрация и шумы. Стандартных противовесов на щеках коленвала и наличия маховика бывает недостаточно, поэтому для дополнительной балансировки устанавливаются балансирные валы.

Для чего предназначены балансиры

Главной задачей балансировочных валов является поглощение лишней инерции и уменьшение вибрации. Это стало актуальным после появления более мощных двигателей с объемом от двух литров.

Читать еще:  Какая смазка лучше для направляющих тормозных суппортов: советы и отзывы

Блок балансирных валов с шестеренчатым приводом от коленчатого вала двигателя

Немалую роль в балансе работы ДВС играет и расположение цилиндров. Можно выделить три распространённые схемы:

  1. Расположение в ряд, когда цилиндры располагаются в одной плоскости.
  2. Оппозитная схема, когда оси цилиндров находятся в одной плоскости противоположно направлены друг другу.
  3. V-образное расположение цилиндров.

Расположение осей цилиндров напрямую влияет на балансировку двигателя. Рядная схема хорошо себя зарекомендовала в 4-х цилиндровых двигателях небольшого объема. Оппозитная схема дает самые лучшие показатели балансировки. V-образное расположение требует точно выверенных углов между цилиндрами, чтобы достичь оптимального баланса.

Как бы то ни было, идеального баланса не удается достичь ни в одной схеме, поэтому и устанавливают балансиры.

Принцип работы

Балансирные валы устанавливаются парами с каждой стороны коленвала и представляют собой сложные по конструкции цилиндрические стержни. Каждый балансирный вал имеет сложную геометрическую форму. Вращаются валы в противоположную сторону в два раза быстрее скорости движения коленвала, тем самым уравновешивая инертные силы второго порядка.

Устанавливаются валы в картере двигателя на подшипниках скольжения (либо игольчатых) и приводятся в движение при помощи привода от коленвала. Подшипники связаны с системой смазки двигателя. Именно они испытывают самую большую нагрузку в процессе работы валов. Это обуславливает их быстрый износ, который сопровождается шумом и вибрацией.

Типы привода

Наиболее распространенным вариантом привода балансиров является цепной или зубчатый ремень. Также приводом может служить зубчатый редуктор или комбинированный вариант: зубчатый редуктор плюс ремень. Чтобы снизить колебания самих валов, в звездочке привода устанавливается пружинный гаситель.

На каких двигателях применяются балансирные валы

Первой балансирные валы применила японская компания Mitsubishi в 1976 году. Новинка получила название «Silent Shaft», что в переводе означает «бесшумный вал».

Главным образом они устанавливаются на четырехцилиндровых двигателях с объемом больше двух литров и с рядным расположением цилиндров, так как именно эта схема наиболее подвержена вибрациям и шумам.

Также балансирные валы часто применяются на мощных дизельных моторах. Сейчас их можно встретить не только на японских моделях, но и на европейских и американских.

Ремонт балансировочных валов

Нагрузки на балансирные валы сопровождаются износом подшипников и других деталей привода. Ремонт обходится дорого, что обусловлено его сложностью. Поэтому некоторые автовладельцы вместо замены или дорогого ремонта предпочитают просто демонтировать блок валов. При этом крепления и отверстия закрываются заглушками.

Отсутствие балансиров повышает уровень вибрации и шума, нарушается балансировка двигателя. Однако, многие автолюбители заверяют, что вибрации при этом остаются незначительные и их успешно компенсируют подушки двигателя. Также работа валов забирает часть мощности самого двигателя. Снижение может достигать до 15 л.с.

При этом всем следует понимать, что демонтаж блока балансирных валов является существенным изменением конструкции двигателя и никто не сможет спрогнозировать как это отразится на работе мотора и его ресурсе в дальнейшем. Решаясь на данную процедуру, владелец автомобиля полностью берет на себя всю ответственность и риски за его исправность и срок службы. Наилучшим вариантом будет замена неисправной детали на новую в специализированном центре.

Устройство автомобилей

Уравновешивание поршневых двигателей

Работа четырехцилиндрового однорядного двигателя

Во время работы поршневого двигателя внутреннего сгорания подвижные детали, перемещаясь, вызывают появление сил и моментов сил инерции, изменяющихся в течение рабочего цикла и по модулю, и по направлению. Это вызывает неравномерность работы двигателя, выражающуюся в его вибрации, передающейся на опоры и далее на автомобиль в целом.

Действия, направленные на устранение причин вибраций, т. е. неуравновешенности двигателя во время его работы, называются уравновешиванием двигателей .
Уравновешивание двигателя сводится к созданию такой системы, в которой равнодействующие силы и их моменты постоянны по величине или равны нулю. Двигатель считается полностью уравновешенным, если при установившемся режиме работы силы и моменты, действующие на его опоры, постоянны по величине и направлению.

У всех поршневых двигателей внутреннего сгорания (ДВС) возникает реактивный момент, противоположный крутящему моменту, который называется опрокидывающим. Опрокидывающий момент передается на подмоторную раму, и, поскольку его величина изменяется во времени, вызывает вибрацию автомобиля. Значение опрокидывающего момента является функцией угла поворота коленчатого вала, также, как и значение крутящего момента, т. е. эти величины являются переменными.
По этой причине абсолютной уравновешенности поршневого ДВС достигнуть невозможно. Однако в зависимости от того, в какой степени устраняются причины, вызывающие неуравновешенность двигателя, различают двигатели полностью уравновешенные, частично уравновешенные, и неуравновешенные.

Читать еще:  Тормозные колодки на уаз патриот 3163 — какие выбрать?

Теоретически любые свободные силы инерции и их моменты могут быть уравновешены. Однако на практике это сопровождается значительным усложнением и удорожанием конструкции. А так как уравновешивание осуществляется не только с учетом технической, но и экономической целесообразности, то не все поршневые двигатели уравновешиваются полностью.

Способы уравновешивания двигателя

В поршневых двигателях внутреннего сгорания уравновешивают центробежные силы инерции вращающихся масс, силы инерции первого и второго порядка, а также моменты, вызываемые этими силами.

Силы инерции 1-го порядка вызываются изменением направления движения деталей поршневой группы во время работы двигателя. Эти силы достигают пиковых значений в моменты прохождения поршнем мертвых точек (при перекладке поршня).
Следствием возникновения сил 1-го порядка является поперечная вибрация двигателя, частота которой равна частоте вращения коленчатого вала. Обычно эти силы частично уравновешиваются балансирами, устанавливаемыми на коленчатом валу. Полное уравновешивание сил инерционных сил 1-го порядка с помощью балансиров невозможно, поскольку сами балансиры совершают вращательное движение, а уравновешиваемые детали поршневой группы – линейное.

Силы инерции 2-го порядка вызываются изменением по величине (по модулю) линейной скорости движения поршня в процессе перемещения его между мертвыми точками. Эти силы достигают максимального значения в середине хода поршня и вызывают поперечную вибрацию двигателя, частота которой в два раза превышает частоту вращение коленчатого вала.
Силы инерции 2-го порядка уравновесить очень сложно, и, поскольку их величина значительно меньше сил инерции 1-го порядка, чаще всего силы 2-го порядка оставляют неуравновешенными, чтобы не усложнять конструкцию двигателя.

Силы инерции первого и второго порядков и их моменты уравновешиваются подбором оптимального числа цилиндров, их расположения и выбором соответствующей схемы коленчатого вала. Если этого не достаточно, то силы инерции уравновешивают противовесами, расположенными на дополнительных валах, имеющих механическую связь с коленчатым валом. Это приводит к значительному усложнению конструкции двигателя, поэтому на практике используется редко.
В рядных двигателях уравновесить силы инерции первого и второго порядков установкой противовесов невозможно. Однако при соответствующем выборе массы противовеса можно частично перенести действие силы инерции первого порядка из одной плоскости в другую, тем самым уменьшив неуравновешенность в этой плоскости.

Центробежные силы инерции вращающихся масс можно уравновесить в двигателе с любым числом цилиндров установкой противовесов на коленчатом валу. В большинстве многоцилиндровых двигателей результирующие силы инерции уравновешиваются не установкой противовесов, а путем подбора соответствующего числа и расположения кривошипов коленчатого вала. Однако даже на уравновешенные валы устанавливают противовесы для уменьшения и более равномерного распределения нагрузки на коренные шейки и подшипники, а также для уменьшения моментов, изгибающих коленчатый вал.
Если нельзя уравновесить опрокидывающий момент, то можно уменьшить его неравномерность (амплитуду) путем снижения неравномерности крутящего момента. Это достигается увеличением числа цилиндров двигателя при равных интервалах между вспышками (тактами рабочего хода) в них.

Предусмотренная конструкторами двигателя уравновешенность может быть сведена к нулю, если не будут выполняться следующие требования к производству деталей двигателя, сборке и регулировке его узлов:

  • равенство масс поршневых групп;
  • равенство масс и одинаковое расположение центров тяжести шатунов;
  • статическая и динамическая сбалансированность коленчатого вала.

При эксплуатации двигателя необходимо, чтобы идентичные рабочие процессы во всех его цилиндрах протекали одинаково. А это зависит от состава смеси, углов опережения зажигания или впрыска топлива, наполнения цилиндров, теплового режима, равномерности распределения смеси по цилиндрам и т. д.

Балансировка коленчатого вала

Коленчатый вал, как и маховик, являясь массивной подвижной частью кривошипно-шатунного механизма, должен вращаться равномерно, без биений. Для этого выполняют его балансировку, подбор и крепление уравновешивающих грузов для обеспечения его полной динамической уравновешенности.

Кроме динамической уравновешенности существует и статическая балансировка, при которой деталь уравновешивают противовесом в произвольно выбранной плоскости, исходя из условия, что деталь будет находиться в равновесии, если ее центр тяжести лежит на оси вращения.
При статической балансировке вал устанавливают на узкие точечные опоры, и путем добавления грузов на его маховик или противовесы добиваются устойчивого равновесия в любом положении.

Динамическая балансировка обеспечивает большую точность, чем статическая. Поэтому коленчатые валы, к которым предъявляются повышенные требования относительно уравновешенности, балансируют динамически.

Динамическую балансировку выполняют на специальных балансировочных станках или стендах, оборудованных устройствами для определения нужного положения уравновешивающего груза, массу которого определяют последовательными пробами, ориентируясь по показаниям приборов.
Во время балансировки вал, закрепленный на стойках станины балансировочного стенда, приводится во вращение с помощью специального привода. При этом центробежные силы приведенных масс оказывают динамическое воздействие, вызывая колебания рамы станка на упругой опоре. Амплитуда колебаний зависит от степени неуравновешенности вала и частоты его вращения на стенде.
Балансировку коленчатого вала проводят или на резонансном режиме, или при угловых скоростях, значительно превышающих резонансные.

Читать еще:  Салонный фильтр на форд фокус 3: оригинал, аналоги mann, filtron, bosch — какие лучше?

Уравновешенность двигателя

Равномерность работы двигателя зависит, кроме прочих причин, от его уравновешенности. Любой поршневой двигатель подвергается действию реактивных сил. Когда поршень в одноцилиндровом двигателе движется вверх, корпус двигателя стремится сдвинуться вниз, и наоборот. При этом та часть автомобиля, на которую установлен двигатель, будет постоянно подвергаться вертикальным колебаниям. Это явление можно устранить, установив на коленчатый вал противовесы. Вертикальные колебания прекратятся, но возникнут поперечные, вызванные самими противовесами. Если в двухцилиндровом рядном двигателе поршни будут двигаться в противоположных направлениях, они будут взаимно компенсировать вертикальные перемещения, но возникнут колебания двигателя вперед-назад. Все автомобильные двигатели устанавливаются на упругих опорах, но в случае большого дисбаланса вибрации могут передаваться на кузов автомобиля. Кроме неравномерности работы двигателя, вызванной перемещением поршней, существует неравномерность, вызванная движением шатунов, которые совершают сложное движение: вверх-вниз и из стороны в сторону.

Общий дисбаланс двигателя в значительной степени зависит от его компоновки. Так, например, четырехцилиндровый рядный двигатель, в отличие от V-образных четырехцилиндровых (двигатель автомобилей Lancia, МеМЗ-968), достаточно хорошо уравновешен. Не случайно они устанавливаются на многих небольших легковых автомобилях. Хотя при увеличении объема такого двигателя вибрации могут стать ощутимыми. Еще лучше уравновешен четырехцилиндровый двигатель с оппозитными (противолежащими) цилиндрами. Такие двигатели успешно применялись на автомобилях VW Beetle, а в настоящее время устанавливаются на большинство автомобилей Subaru. Шестицилиндровые двигатели с оппозитными цилиндрами (Porsche 911 и некоторые Subaru) обладают отличной уравновешенностью при работе. Кроме того, такие двигатели дают возможность понизить центр масс автомобиля, а при переднем расположении — применить пологий капот, улучшающий аэродинамику автомобиля. К недостаткам таких двигателей следует отнести сложность их производства и обслуживания. В рядном шестицилиндровом двигателе можно добиться практически абсолютной уравновешенности сил инерции. V-образные шестицилиндровые двигатели более компактны по длине, что особенно важно при их поперечной установке на автомобиле. Уравновешенность V-образных двигателей зависит от угла между осями цилиндров. Так, для V-образного шестицилиндрового двигателя наилучшим углом будет угол 60° или 120° (или 180° у двигателя с оппозитными цилиндрами). Такие же углы «идеально» подходят для почти полностью уравновешенного двигателя V12, хотя большие углы увеличивают ширину двигателя. Достаточно хорошо уравновешен двигатель V8, если угол между осями цилиндров составляет 90° и применяется соответствующая конструкция коленчатого вала.

Рис: Балансирные валы двигателя GM Vortec 2004 г. располагаются рядом с коленчатым валом в блоке цилиндров и имеют возможность вращаться в разные стороны благодаря шестеренчатому цепному приводу. Для снижения шума используются гидравлический натяжитель и успокоители цепи

Дисбаланс двигателей может быть почти полностью компенсирован применением балансирных валов, которые имеют противовесы и приводятся во вращение от коленчатого вала двигателя. Для получения хороших результатов балансирные валы должны устанавливаться в определенном месте двигателя, что существенно усложняет его конструкцию.

Рис: Компактные балансирные валы четырехцилиндрового двигателя BMW Valvetronic располагаются в поддоне картера

В последнее время для уменьшения вибраций рядных четырехцилиндровых двигателей большого объема стали широко применять балансирные валы, устанавливаемые рядом в поддоне картера двигателя (двигатели Ford Coswort DOHC, двигатели BMW). Довольно часто производители автомобилей увеличивают мощность двигателя за счет добавления еще одного цилиндра. Такой способ дает возможность сборки двигателей на одной технологической линии, что удешевляет производство. Таким образом были созданы пятицилиндровые двигатели Volvo, Volkswagen и Fiat. Для таких двигателей часто применяются балансирные валы. Двигатели с тремя цилиндрами также уравновешены пло хо, и, поскольку они устанавливаются на недорогие автомобили, конструкторы часто отказываются от применения балансирных валов, позволяя двигателю работать неравномерно, но для монтажа двигателя применяют специальные вибропоглощающие опоры, которые дают возможность свести к минимуму передачу на кузов вибраций. На дорогих автомобилях применяются еще более совершенные опоры двигателя. Так, на Range Rover с дизелем TD6 применяются гидравлические опоры с электронным управлением. Компьютер, управляющий работой этих опор, сводит практически к нулю все вибрации, передающиеся на кузов автомобиля.

Двигатели V10, которые успешно применяются на гоночных автомобилях Формулы–1, между рядами цилиндров имеют угол 72°. Такой двигатель недостаточно уравновешен, но работает довольно равномерно из-за большого числа цилиндров.

Ссылка на основную публикацию
Adblock
detector